MakeItFrom.com
Menu (ESC)

3005 Aluminum vs. Nickel 693

3005 aluminum belongs to the aluminum alloys classification, while nickel 693 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3005 aluminum and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 16
34
Fatigue Strength, MPa 53 to 100
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 84 to 150
440
Tensile Strength: Ultimate (UTS), MPa 140 to 270
660
Tensile Strength: Yield (Proof), MPa 51 to 240
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 660
1350
Melting Onset (Solidus), °C 640
1310
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
9.1
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.2
9.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 18
190
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 390
250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 14 to 27
23
Strength to Weight: Bending, points 21 to 33
21
Thermal Diffusivity, mm2/s 64
2.3
Thermal Shock Resistance, points 6.0 to 12
19

Alloy Composition

Aluminum (Al), % 95.7 to 98.8
2.5 to 4.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
27 to 31
Copper (Cu), % 0 to 0.3
0 to 0.5
Iron (Fe), % 0 to 0.7
2.5 to 6.0
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Nickel (Ni), % 0
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0 to 1.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0