MakeItFrom.com
Menu (ESC)

308.0 Aluminum vs. S44401 Stainless Steel

308.0 aluminum belongs to the aluminum alloys classification, while S44401 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 308.0 aluminum and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.0
21
Fatigue Strength, MPa 89
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 150
300
Tensile Strength: Ultimate (UTS), MPa 190
480
Tensile Strength: Yield (Proof), MPa 110
300

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
22
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
2.9
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 1080
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3
90
Resilience: Unit (Modulus of Resilience), kJ/m3 83
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 25
18
Thermal Diffusivity, mm2/s 55
5.9
Thermal Shock Resistance, points 9.2
17

Alloy Composition

Aluminum (Al), % 85.7 to 91
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.0
75.1 to 80.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.0 to 6.0
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0.2 to 0.8
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0