MakeItFrom.com
Menu (ESC)

3103 Aluminum vs. EN 1.0478 Steel

3103 aluminum belongs to the aluminum alloys classification, while EN 1.0478 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3103 aluminum and the bottom bar is EN 1.0478 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
130
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 28
24
Fatigue Strength, MPa 38 to 83
170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 68 to 130
280
Tensile Strength: Ultimate (UTS), MPa 100 to 220
440
Tensile Strength: Yield (Proof), MPa 39 to 200
230

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
49
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
90
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 280
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 10 to 22
16
Strength to Weight: Bending, points 18 to 30
16
Thermal Diffusivity, mm2/s 64
13
Thermal Shock Resistance, points 4.6 to 9.9
14

Alloy Composition

Aluminum (Al), % 96.3 to 99.1
0 to 0.060
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.7
96.9 to 99.4
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0.9 to 1.5
0.6 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.030
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.15
0