MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. ACI-ASTM CN3MN Steel

3104 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is ACI-ASTM CN3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.1 to 20
39
Fatigue Strength, MPa 74 to 130
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 170 to 310
620
Tensile Strength: Yield (Proof), MPa 68 to 270
300

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.4
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
200
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 17 to 31
21
Strength to Weight: Bending, points 25 to 37
20
Thermal Diffusivity, mm2/s 64
3.4
Thermal Shock Resistance, points 7.6 to 13
14

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 0.050 to 0.25
0 to 0.75
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
41.4 to 50.3
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0.8 to 1.4
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Nitrogen (N), % 0
0.18 to 0.26
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0