MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. ACI-ASTM CT15C Steel

3104 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CT15C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is ACI-ASTM CT15C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 20
23
Fatigue Strength, MPa 74 to 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 170 to 310
500
Tensile Strength: Yield (Proof), MPa 68 to 270
190

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
1080
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 600
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.4
6.1
Embodied Energy, MJ/kg 150
88
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
90
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
93
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 17 to 31
17
Strength to Weight: Bending, points 25 to 37
17
Thermal Diffusivity, mm2/s 64
3.2
Thermal Shock Resistance, points 7.6 to 13
12

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0.050 to 0.25
0
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
40.3 to 49.2
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0.8 to 1.4
0.15 to 1.5
Nickel (Ni), % 0
31 to 34
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.6
0.15 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0