MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. EN 1.4105 Stainless Steel

3104 aluminum belongs to the aluminum alloys classification, while EN 1.4105 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is EN 1.4105 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 20
23
Fatigue Strength, MPa 74 to 130
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 110 to 180
340
Tensile Strength: Ultimate (UTS), MPa 170 to 310
530
Tensile Strength: Yield (Proof), MPa 68 to 270
290

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.4
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
100
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 17 to 31
19
Strength to Weight: Bending, points 25 to 37
19
Thermal Diffusivity, mm2/s 64
6.7
Thermal Shock Resistance, points 7.6 to 13
19

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0.050 to 0.25
0
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
77.9 to 83.7
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0.8 to 1.4
0 to 1.5
Molybdenum (Mo), % 0
0.2 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.5
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0