MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. EN AC-45000 Aluminum

Both 3104 aluminum and EN AC-45000 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 1.1 to 20
1.1
Fatigue Strength, MPa 74 to 130
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 170 to 310
180
Tensile Strength: Yield (Proof), MPa 68 to 270
110

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 600
520
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 160
120
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
27
Electrical Conductivity: Equal Weight (Specific), % IACS 130
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.4
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
80
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 17 to 31
17
Strength to Weight: Bending, points 25 to 37
24
Thermal Diffusivity, mm2/s 64
47
Thermal Shock Resistance, points 7.6 to 13
8.0

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
82.2 to 91.8
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0.050 to 0.25
3.0 to 5.0
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0.8 to 1.3
0 to 0.55
Manganese (Mn), % 0.8 to 1.4
0.2 to 0.65
Nickel (Ni), % 0
0 to 0.45
Silicon (Si), % 0 to 0.6
5.0 to 7.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
0 to 2.0
Residuals, % 0
0 to 0.35