MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. EN AC-48000 Aluminum

Both 3104 aluminum and EN AC-48000 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 1.1 to 20
1.0
Fatigue Strength, MPa 74 to 130
85 to 86
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 170 to 310
220 to 310
Tensile Strength: Yield (Proof), MPa 68 to 270
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 600
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
33
Electrical Conductivity: Equal Weight (Specific), % IACS 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.4
7.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
300 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 17 to 31
23 to 33
Strength to Weight: Bending, points 25 to 37
31 to 39
Thermal Diffusivity, mm2/s 64
54
Thermal Shock Resistance, points 7.6 to 13
10 to 15

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
80.4 to 87.2
Copper (Cu), % 0.050 to 0.25
0.8 to 1.5
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
0 to 0.7
Magnesium (Mg), % 0.8 to 1.3
0.8 to 1.5
Manganese (Mn), % 0.8 to 1.4
0 to 0.35
Nickel (Ni), % 0
0.7 to 1.3
Silicon (Si), % 0 to 0.6
10.5 to 13.5
Titanium (Ti), % 0 to 0.1
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
0 to 0.35
Residuals, % 0
0 to 0.15