MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. Grade 28 Titanium

3104 aluminum belongs to the aluminum alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.1 to 20
11 to 17
Fatigue Strength, MPa 74 to 130
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 110 to 180
420 to 590
Tensile Strength: Ultimate (UTS), MPa 170 to 310
690 to 980
Tensile Strength: Yield (Proof), MPa 68 to 270
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
330
Melting Completion (Liquidus), °C 650
1640
Melting Onset (Solidus), °C 600
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 160
8.3
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.8
4.5
Embodied Carbon, kg CO2/kg material 8.4
37
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
1370 to 3100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 17 to 31
43 to 61
Strength to Weight: Bending, points 25 to 37
39 to 49
Thermal Diffusivity, mm2/s 64
3.4
Thermal Shock Resistance, points 7.6 to 13
47 to 66

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0.050 to 0.25
0
Gallium (Ga), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.8
0 to 0.25
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0.8 to 1.4
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.6
0
Titanium (Ti), % 0 to 0.1
92.4 to 95.4
Vanadium (V), % 0 to 0.050
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4

Comparable Variants