MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. C68300 Brass

3104 aluminum belongs to the aluminum alloys classification, while C68300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 1.1 to 20
15
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 110 to 180
260
Tensile Strength: Ultimate (UTS), MPa 170 to 310
430
Tensile Strength: Yield (Proof), MPa 68 to 270
260

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 650
900
Melting Onset (Solidus), °C 600
890
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
120
Thermal Expansion, µm/m-K 23
20

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.4
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
56
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 17 to 31
15
Strength to Weight: Bending, points 25 to 37
16
Thermal Diffusivity, mm2/s 64
38
Thermal Shock Resistance, points 7.6 to 13
14

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
0
Antimony (Sb), % 0
0.3 to 1.0
Cadmium (Cd), % 0
0 to 0.010
Copper (Cu), % 0.050 to 0.25
59 to 63
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
0
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0.8 to 1.4
0
Silicon (Si), % 0 to 0.6
0.3 to 1.0
Tin (Sn), % 0
0.050 to 0.2
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
34.2 to 40.4
Residuals, % 0
0 to 0.5