MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. C83800 Bronze

3104 aluminum belongs to the aluminum alloys classification, while C83800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is C83800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 1.1 to 20
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
39
Tensile Strength: Ultimate (UTS), MPa 170 to 310
230
Tensile Strength: Yield (Proof), MPa 68 to 270
110

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 650
1000
Melting Onset (Solidus), °C 600
840
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 160
72
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
15
Electrical Conductivity: Equal Weight (Specific), % IACS 130
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 8.4
2.9
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
39
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
53
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 17 to 31
7.4
Strength to Weight: Bending, points 25 to 37
9.6
Thermal Diffusivity, mm2/s 64
22
Thermal Shock Resistance, points 7.6 to 13
8.6

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 0.050 to 0.25
82 to 83.8
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
0 to 0.3
Lead (Pb), % 0
5.0 to 7.0
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0.8 to 1.4
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.6
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
3.3 to 4.2
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
5.0 to 8.0
Residuals, % 0
0 to 0.7