MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. N06603 Nickel

3104 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 20
28
Fatigue Strength, MPa 74 to 130
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 110 to 180
480
Tensile Strength: Ultimate (UTS), MPa 170 to 310
740
Tensile Strength: Yield (Proof), MPa 68 to 270
340

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 650
1340
Melting Onset (Solidus), °C 600
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.4
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
170
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 17 to 31
25
Strength to Weight: Bending, points 25 to 37
22
Thermal Diffusivity, mm2/s 64
2.9
Thermal Shock Resistance, points 7.6 to 13
20

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.050 to 0.25
0 to 0.5
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
8.0 to 11
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0.8 to 1.4
0 to 0.15
Nickel (Ni), % 0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0.010 to 0.25
Vanadium (V), % 0 to 0.050
0
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 0.25
0.010 to 0.1
Residuals, % 0 to 0.15
0