MakeItFrom.com
Menu (ESC)

3104-O Aluminum vs. Annealed AISI 301LN

3104-O aluminum belongs to the aluminum alloys classification, while annealed AISI 301LN belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3104-O aluminum and the bottom bar is annealed AISI 301LN.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 20
51
Fatigue Strength, MPa 74
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 110
450
Tensile Strength: Ultimate (UTS), MPa 170
630
Tensile Strength: Yield (Proof), MPa 68
270

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
890
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
260
Resilience: Unit (Modulus of Resilience), kJ/m3 34
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 25
21
Thermal Diffusivity, mm2/s 64
4.0
Thermal Shock Resistance, points 7.6
14

Alloy Composition

Aluminum (Al), % 95.1 to 98.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0.050 to 0.25
0
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
70.7 to 77.9
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0.8 to 1.4
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0