MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. EN 1.4982 Stainless Steel

328.0 aluminum belongs to the aluminum alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
230
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.6 to 2.1
28
Fatigue Strength, MPa 55 to 80
420
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 200 to 270
750
Tensile Strength: Yield (Proof), MPa 120 to 170
570

Thermal Properties

Latent Heat of Fusion, J/g 510
290
Maximum Temperature: Mechanical, °C 180
860
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
4.9
Embodied Energy, MJ/kg 140
71
Embodied Water, L/kg 1070
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
190
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
830
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 21 to 28
27
Strength to Weight: Bending, points 28 to 34
23
Thermal Diffusivity, mm2/s 50
3.4
Thermal Shock Resistance, points 9.2 to 12
17

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
0
Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0 to 0.35
14 to 16
Copper (Cu), % 1.0 to 2.0
0
Iron (Fe), % 0 to 1.0
61.8 to 69.7
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 0.25
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 8.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.15 to 0.4
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0