MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. Grade 25 Titanium

336.0 aluminum belongs to the aluminum alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 0.5
11
Fatigue Strength, MPa 80 to 93
550
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
40
Shear Strength, MPa 190 to 250
600
Tensile Strength: Ultimate (UTS), MPa 250 to 320
1000
Tensile Strength: Yield (Proof), MPa 190 to 300
940

Thermal Properties

Latent Heat of Fusion, J/g 570
410
Maximum Temperature: Mechanical, °C 210
340
Melting Completion (Liquidus), °C 570
1610
Melting Onset (Solidus), °C 540
1560
Specific Heat Capacity, J/kg-K 890
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 19
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.0

Otherwise Unclassified Properties

Density, g/cm3 2.8
4.5
Embodied Carbon, kg CO2/kg material 7.9
43
Embodied Energy, MJ/kg 140
700
Embodied Water, L/kg 1010
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
4220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 25 to 32
62
Strength to Weight: Bending, points 32 to 38
50
Thermal Diffusivity, mm2/s 48
2.8
Thermal Shock Resistance, points 12 to 16
71

Alloy Composition

Aluminum (Al), % 79.1 to 85.8
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0.5 to 1.5
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 1.2
0 to 0.4
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 2.0 to 3.0
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 11 to 13
0
Titanium (Ti), % 0 to 0.25
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0
0 to 0.4