MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. EN 1.6956 Steel

356.0 aluminum belongs to the aluminum alloys classification, while EN 1.6956 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is EN 1.6956 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
370
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.0 to 3.8
9.6
Fatigue Strength, MPa 55 to 75
680
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 140 to 190
730
Tensile Strength: Ultimate (UTS), MPa 160 to 240
1230
Tensile Strength: Yield (Proof), MPa 100 to 190
1120

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150 to 170
46
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
5.0
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1110
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
110
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
3320
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 17 to 26
43
Strength to Weight: Bending, points 25 to 33
32
Thermal Diffusivity, mm2/s 64 to 71
12
Thermal Shock Resistance, points 7.6 to 11
36

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0
Carbon (C), % 0
0.28 to 0.38
Chromium (Cr), % 0
1.0 to 1.7
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
92.4 to 95.3
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0.15 to 0.4
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
2.9 to 3.8
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.080 to 0.25
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0