MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. Grade 5 Titanium

356.0 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.0 to 3.8
8.6 to 11
Fatigue Strength, MPa 55 to 75
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Shear Strength, MPa 140 to 190
600 to 710
Tensile Strength: Ultimate (UTS), MPa 160 to 240
1000 to 1190
Tensile Strength: Yield (Proof), MPa 100 to 190
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 500
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 620
1610
Melting Onset (Solidus), °C 570
1650
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 150 to 170
6.8
Thermal Expansion, µm/m-K 21
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
4.4
Embodied Carbon, kg CO2/kg material 8.0
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
3980 to 5880
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
35
Strength to Weight: Axial, points 17 to 26
62 to 75
Strength to Weight: Bending, points 25 to 33
50 to 56
Thermal Diffusivity, mm2/s 64 to 71
2.7
Thermal Shock Resistance, points 7.6 to 11
76 to 91

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.6
0 to 0.4
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 6.5 to 7.5
0
Titanium (Ti), % 0 to 0.25
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0
0 to 0.4