MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. EN 1.4865 Stainless Steel

360.0 aluminum belongs to the aluminum alloys classification, while EN 1.4865 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is EN 1.4865 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
140
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 2.5
6.8
Fatigue Strength, MPa 140
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 300
470
Tensile Strength: Yield (Proof), MPa 170
250

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 590
1380
Melting Onset (Solidus), °C 570
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.8
5.8
Embodied Energy, MJ/kg 140
81
Embodied Water, L/kg 1070
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
27
Resilience: Unit (Modulus of Resilience), kJ/m3 200
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 55
3.1
Thermal Shock Resistance, points 14
11

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
34.4 to 44.7
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
36 to 39
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0