MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. EN 1.0308 Steel

384.0 aluminum belongs to the aluminum alloys classification, while EN 1.0308 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is EN 1.0308 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
100 to 130
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
7.8 to 28
Fatigue Strength, MPa 140
140 to 200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Shear Strength, MPa 200
230 to 260
Tensile Strength: Ultimate (UTS), MPa 330
360 to 440
Tensile Strength: Yield (Proof), MPa 170
190 to 340

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 96
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 69
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.4
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 1010
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
32 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 190
93 to 300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 32
13 to 16
Strength to Weight: Bending, points 37
14 to 16
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 15
11 to 14

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0
Carbon (C), % 0
0 to 0.17
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
98.2 to 100
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.2
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 10.5 to 12
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0