MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. ASTM A182 Grade F23

4004 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F23 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is ASTM A182 grade F23.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4
22
Fatigue Strength, MPa 42
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 63
360
Tensile Strength: Ultimate (UTS), MPa 110
570
Tensile Strength: Yield (Proof), MPa 60
460

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 160
450
Melting Completion (Liquidus), °C 600
1500
Melting Onset (Solidus), °C 560
1450
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.0
2.5
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1070
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
120
Resilience: Unit (Modulus of Resilience), kJ/m3 25
550
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 12
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 5.1
17

Alloy Composition

Aluminum (Al), % 86 to 90
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
1.9 to 2.6
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
93.2 to 96.2
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 10.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0