MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. ACI-ASTM CK3MCuN Steel

4006 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK3MCuN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is ACI-ASTM CK3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
180
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 24
39
Fatigue Strength, MPa 35 to 110
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 110 to 160
620
Tensile Strength: Yield (Proof), MPa 62 to 140
290

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 160
1090
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 620
1350
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 220
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
29
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.1
5.6
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
200
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 16
21
Strength to Weight: Bending, points 19 to 24
20
Thermal Diffusivity, mm2/s 89
3.2
Thermal Shock Resistance, points 4.9 to 7.0
14

Alloy Composition

Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.2
19.5 to 20.5
Copper (Cu), % 0 to 0.1
0.5 to 1.0
Iron (Fe), % 0.5 to 0.8
49.5 to 56.3
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0 to 1.2
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
17.5 to 19.5
Nitrogen (N), % 0
0.18 to 0.24
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.8 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0