MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. AISI 434 Stainless Steel

4032 aluminum belongs to the aluminum alloys classification, while AISI 434 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
170
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 6.7
24
Fatigue Strength, MPa 110
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Shear Strength, MPa 260
330
Tensile Strength: Ultimate (UTS), MPa 390
520
Tensile Strength: Yield (Proof), MPa 320
320

Thermal Properties

Latent Heat of Fusion, J/g 570
280
Maximum Temperature: Mechanical, °C 180
880
Melting Completion (Liquidus), °C 570
1510
Melting Onset (Solidus), °C 530
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
25
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.4
Embodied Energy, MJ/kg 140
33
Embodied Water, L/kg 1030
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
110
Resilience: Unit (Modulus of Resilience), kJ/m3 700
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 41
19
Strength to Weight: Bending, points 45
18
Thermal Diffusivity, mm2/s 59
6.7
Thermal Shock Resistance, points 20
19

Alloy Composition

Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0.5 to 1.3
0
Iron (Fe), % 0 to 1.0
78.6 to 83.3
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0.5 to 1.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0