MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. CR021A Copper

4045 aluminum belongs to the aluminum alloys classification, while CR021A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is CR021A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 2.3
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 120
230
Tensile Strength: Yield (Proof), MPa 64
140

Thermal Properties

Latent Heat of Fusion, J/g 540
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 600
1090
Melting Onset (Solidus), °C 580
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 170
380
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
98
Electrical Conductivity: Equal Weight (Specific), % IACS 160
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
9.0
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1070
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
31
Resilience: Unit (Modulus of Resilience), kJ/m3 29
83
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 54
18
Strength to Weight: Axial, points 13
7.1
Strength to Weight: Bending, points 21
9.3
Thermal Diffusivity, mm2/s 74
110
Thermal Shock Resistance, points 5.7
8.1

Alloy Composition

Aluminum (Al), % 87.4 to 91
0
Bismuth (Bi), % 0
0 to 0.00050
Copper (Cu), % 0 to 0.3
99.95 to 99.998
Iron (Fe), % 0 to 0.8
0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Phosphorus (P), % 0
0.0020 to 0.0070
Silicon (Si), % 9.0 to 11
0
Silver (Ag), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0