MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. C22000 Bronze

4104 aluminum belongs to the aluminum alloys classification, while C22000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 2.4
1.9 to 45
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Shear Strength, MPa 63
200 to 300
Tensile Strength: Ultimate (UTS), MPa 110
260 to 520
Tensile Strength: Yield (Proof), MPa 60
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 540
200
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 600
1040
Melting Onset (Solidus), °C 560
1020
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
190
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
44
Electrical Conductivity: Equal Weight (Specific), % IACS 120
45

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1080
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 25
21 to 1110
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 54
18
Strength to Weight: Axial, points 12
8.1 to 17
Strength to Weight: Bending, points 20
10 to 17
Thermal Diffusivity, mm2/s 58
56
Thermal Shock Resistance, points 5.1
8.8 to 18

Alloy Composition

Aluminum (Al), % 85.8 to 90
0
Bismuth (Bi), % 0.020 to 0.2
0
Copper (Cu), % 0 to 0.25
89 to 91
Iron (Fe), % 0 to 0.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 9.0 to 10.5
0
Zinc (Zn), % 0 to 0.2
8.7 to 11
Residuals, % 0
0 to 0.2