MakeItFrom.com
Menu (ESC)

4115 Aluminum vs. EN 1.4490 Stainless Steel

4115 aluminum belongs to the aluminum alloys classification, while EN 1.4490 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4115 aluminum and the bottom bar is EN 1.4490 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 11
34
Fatigue Strength, MPa 39 to 76
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 120 to 220
560
Tensile Strength: Yield (Proof), MPa 39 to 190
260

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.1
3.7
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 10
160
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 270
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 12 to 23
20
Strength to Weight: Bending, points 20 to 30
19
Thermal Diffusivity, mm2/s 66
4.1
Thermal Shock Resistance, points 5.2 to 9.9
16

Alloy Composition

Aluminum (Al), % 94.6 to 97.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 0.1 to 0.5
0
Iron (Fe), % 0 to 0.7
61.7 to 70.9
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
9.0 to 12
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 1.8 to 2.2
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0