MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. EN 1.4305 Stainless Steel

413.0 aluminum belongs to the aluminum alloys classification, while EN 1.4305 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is EN 1.4305 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
200 to 270
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 2.5
14 to 40
Fatigue Strength, MPa 130
190 to 330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 170
420 to 550
Tensile Strength: Ultimate (UTS), MPa 270
610 to 900
Tensile Strength: Yield (Proof), MPa 140
220 to 570

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
3.0
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 1040
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 130
120 to 830
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 29
22 to 32
Strength to Weight: Bending, points 36
20 to 27
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 13
14 to 20

Alloy Composition

Aluminum (Al), % 82.2 to 89
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 1.0
0 to 1.0
Iron (Fe), % 0 to 2.0
66.4 to 74.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Nickel (Ni), % 0 to 0.5
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0