MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. ASTM A356 Grade 10

443.0 aluminum belongs to the aluminum alloys classification, while ASTM A356 grade 10 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is ASTM A356 grade 10.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 41
200
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6
23
Fatigue Strength, MPa 55
300
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 150
670
Tensile Strength: Yield (Proof), MPa 65
430

Thermal Properties

Latent Heat of Fusion, J/g 470
260
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 580
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.9
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1120
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 30
480
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 61
11
Thermal Shock Resistance, points 6.9
19

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.25
2.0 to 2.8
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 0.8
94.4 to 96.6
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
0.5 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 4.5 to 6.0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0