MakeItFrom.com
Menu (ESC)

443.0 Aluminum vs. EN 1.8935 Steel

443.0 aluminum belongs to the aluminum alloys classification, while EN 1.8935 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 443.0 aluminum and the bottom bar is EN 1.8935 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 41
190
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6
19
Fatigue Strength, MPa 55
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 96
400
Tensile Strength: Ultimate (UTS), MPa 150
640
Tensile Strength: Yield (Proof), MPa 65
490

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
46
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.7
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1120
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 30
640
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 16
23
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 61
12
Thermal Shock Resistance, points 6.9
19

Alloy Composition

Aluminum (Al), % 90.7 to 95.5
0.020 to 0.050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.25
0 to 0.3
Copper (Cu), % 0 to 0.6
0 to 0.7
Iron (Fe), % 0 to 0.8
95.2 to 98.9
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.5
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 4.5 to 6.0
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.030
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.35
0