MakeItFrom.com
Menu (ESC)

511.0 Aluminum vs. AISI 430FSe Stainless Steel

511.0 aluminum belongs to the aluminum alloys classification, while AISI 430FSe stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 511.0 aluminum and the bottom bar is AISI 430FSe stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
230
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 3.0
23
Fatigue Strength, MPa 55
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 120
340
Tensile Strength: Ultimate (UTS), MPa 150
540
Tensile Strength: Yield (Proof), MPa 83
310

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
25
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
2.1
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7
110
Resilience: Unit (Modulus of Resilience), kJ/m3 51
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 15
20
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 59
6.8
Thermal Shock Resistance, points 6.5
19

Alloy Composition

Aluminum (Al), % 93.3 to 96.2
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
79.5 to 84
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.3 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.060
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0