MakeItFrom.com
Menu (ESC)

512.0 Aluminum vs. EN 1.4563 Stainless Steel

512.0 aluminum belongs to the aluminum alloys classification, while EN 1.4563 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 512.0 aluminum and the bottom bar is EN 1.4563 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
200
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 2.0
40
Fatigue Strength, MPa 58
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 130
620
Tensile Strength: Yield (Proof), MPa 83
250

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.8
6.3
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1160
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
200
Resilience: Unit (Modulus of Resilience), kJ/m3 50
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 14
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 60
3.2
Thermal Shock Resistance, points 6.1
13

Alloy Composition

Aluminum (Al), % 90.6 to 95.1
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.25
26 to 28
Copper (Cu), % 0 to 0.35
0.7 to 1.5
Iron (Fe), % 0 to 0.6
31.6 to 40.3
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.4 to 2.2
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0