MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. ACI-ASTM CF8C Steel

535.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF8C steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 70
150
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 10
40
Fatigue Strength, MPa 70
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 270
530
Tensile Strength: Yield (Proof), MPa 140
260

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.4
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
180
Resilience: Unit (Modulus of Resilience), kJ/m3 150
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 35
19
Thermal Diffusivity, mm2/s 42
4.3
Thermal Shock Resistance, points 12
11

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.15
61.8 to 73
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0