MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. Grade 23 Titanium

705.0 aluminum belongs to the aluminum alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 8.4 to 10
6.7 to 11
Fatigue Strength, MPa 63 to 98
470 to 500
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 240 to 260
930 to 940
Tensile Strength: Yield (Proof), MPa 130
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 610
1560
Specific Heat Capacity, J/kg-K 890
560
Thermal Conductivity, W/m-K 140
7.1
Thermal Expansion, µm/m-K 24
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.8
4.4
Embodied Carbon, kg CO2/kg material 8.4
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
3430 to 3560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
35
Strength to Weight: Axial, points 24 to 26
58 to 59
Strength to Weight: Bending, points 31 to 32
48
Thermal Diffusivity, mm2/s 55
2.9
Thermal Shock Resistance, points 11
67 to 68

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.8
0 to 0.25
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.25
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 3.3
0
Residuals, % 0
0 to 0.4