MakeItFrom.com
Menu (ESC)

705.0 Aluminum vs. S44536 Stainless Steel

705.0 aluminum belongs to the aluminum alloys classification, while S44536 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 705.0 aluminum and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 62 to 65
170
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 8.4 to 10
22
Fatigue Strength, MPa 63 to 98
190
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 240 to 260
460
Tensile Strength: Yield (Proof), MPa 130
280

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 610
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 140
21
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.4
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1170
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 20
89
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 130
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 24 to 26
17
Strength to Weight: Bending, points 31 to 32
17
Thermal Diffusivity, mm2/s 55
5.6
Thermal Shock Resistance, points 11
16

Alloy Composition

Aluminum (Al), % 92.3 to 98.6
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.4
20 to 23
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.8
72.8 to 80
Magnesium (Mg), % 1.4 to 1.8
0
Manganese (Mn), % 0 to 0.6
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.8
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0 to 0.8
Zinc (Zn), % 0 to 3.3
0
Residuals, % 0 to 0.15
0