MakeItFrom.com
Menu (ESC)

713.0 Aluminum vs. SAE-AISI 1016 Steel

713.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1016 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 713.0 aluminum and the bottom bar is SAE-AISI 1016 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 74 to 75
120 to 140
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.9 to 4.3
21 to 28
Fatigue Strength, MPa 63 to 120
180 to 270
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 180
280 to 300
Tensile Strength: Ultimate (UTS), MPa 240 to 260
430 to 480
Tensile Strength: Yield (Proof), MPa 170
240 to 390

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.7 to 9.9
92 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 220
150 to 410
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 22 to 23
15 to 17
Strength to Weight: Bending, points 28 to 29
16 to 17
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 10 to 11
13 to 15

Alloy Composition

Aluminum (Al), % 87.6 to 92.4
0
Carbon (C), % 0
0.13 to 0.18
Chromium (Cr), % 0 to 0.35
0
Copper (Cu), % 0.4 to 1.0
0
Iron (Fe), % 0 to 1.1
98.8 to 99.27
Magnesium (Mg), % 0.2 to 0.5
0
Manganese (Mn), % 0 to 0.6
0.6 to 0.9
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.0 to 8.0
0
Residuals, % 0 to 0.25
0