MakeItFrom.com
Menu (ESC)

772.0 Aluminum vs. AWS ERNiFeCr-2

772.0 aluminum belongs to the aluminum alloys classification, while AWS ERNiFeCr-2 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 772.0 aluminum and the bottom bar is AWS ERNiFeCr-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 6.3 to 8.4
28
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 260 to 320
1300

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.0
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1140
250

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 25 to 31
43
Strength to Weight: Bending, points 31 to 36
32
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 11 to 14
38

Alloy Composition

Aluminum (Al), % 91.2 to 93.2
0.2 to 0.8
Boron (B), % 0
0 to 0.0030
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.060 to 0.2
17 to 21
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.15
11.6 to 24.6
Magnesium (Mg), % 0.6 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.15
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.2
0.65 to 1.2
Zinc (Zn), % 6.0 to 7.0
0
Residuals, % 0
0 to 0.5