MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. S21600 Stainless Steel

850.0 aluminum belongs to the aluminum alloys classification, while S21600 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is S21600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45
200
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 7.9
46
Fatigue Strength, MPa 59
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 100
500
Tensile Strength: Ultimate (UTS), MPa 140
710
Tensile Strength: Yield (Proof), MPa 76
390

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 370
1380
Specific Heat Capacity, J/kg-K 850
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 14
17
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.5
3.6
Embodied Energy, MJ/kg 160
50
Embodied Water, L/kg 1160
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
270
Resilience: Unit (Modulus of Resilience), kJ/m3 42
370
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 12
25
Strength to Weight: Bending, points 19
23
Thermal Shock Resistance, points 6.1
15

Alloy Composition

Aluminum (Al), % 88.3 to 93.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17.5 to 22
Copper (Cu), % 0.7 to 1.3
0
Iron (Fe), % 0 to 0.7
57.6 to 67.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
7.5 to 9.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.7 to 1.3
5.0 to 7.0
Nitrogen (N), % 0
0.25 to 0.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0