MakeItFrom.com
Menu (ESC)

851.0 Aluminum vs. EN 1.4501 Stainless Steel

851.0 aluminum belongs to the aluminum alloys classification, while EN 1.4501 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 851.0 aluminum and the bottom bar is EN 1.4501 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.9 to 9.1
27
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 130 to 140
830

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 360
1410
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 14
22
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.4
4.1
Embodied Energy, MJ/kg 160
57
Embodied Water, L/kg 1140
180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 12 to 13
29
Strength to Weight: Bending, points 19 to 20
25
Thermal Diffusivity, mm2/s 69
4.0
Thermal Shock Resistance, points 6.1 to 6.3
22

Alloy Composition

Aluminum (Al), % 86.6 to 91.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.7 to 1.3
0.5 to 1.0
Iron (Fe), % 0 to 0.7
57.6 to 65.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0.3 to 0.7
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 2.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.5 to 1.0
Residuals, % 0 to 0.3
0