MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. EN 1.4982 Stainless Steel

A206.0 aluminum belongs to the aluminum alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
230
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 4.2 to 10
28
Fatigue Strength, MPa 90 to 180
420
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 260
490
Tensile Strength: Ultimate (UTS), MPa 390 to 440
750
Tensile Strength: Yield (Proof), MPa 250 to 380
570

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 670
1430
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
4.9
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
190
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 36 to 41
27
Strength to Weight: Bending, points 39 to 43
23
Thermal Diffusivity, mm2/s 48
3.4
Thermal Shock Resistance, points 17 to 19
17

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0
Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.1
61.8 to 69.7
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 0.050
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0.15 to 0.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0