MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. Grade 9 Titanium

A206.0 aluminum belongs to the aluminum alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 4.2 to 10
11 to 17
Fatigue Strength, MPa 90 to 180
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 260
430 to 580
Tensile Strength: Ultimate (UTS), MPa 390 to 440
700 to 960
Tensile Strength: Yield (Proof), MPa 250 to 380
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 670
1640
Melting Onset (Solidus), °C 550
1590
Specific Heat Capacity, J/kg-K 880
550
Thermal Conductivity, W/m-K 130
8.1
Thermal Expansion, µm/m-K 23
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 8.0
36
Embodied Energy, MJ/kg 150
580
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
1380 to 3220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 36 to 41
43 to 60
Strength to Weight: Bending, points 39 to 43
39 to 48
Thermal Diffusivity, mm2/s 48
3.3
Thermal Shock Resistance, points 17 to 19
52 to 71

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 4.2 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.25
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4