MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. Nickel 693

A206.0 aluminum belongs to the aluminum alloys classification, while nickel 693 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is nickel 693.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 4.2 to 10
34
Fatigue Strength, MPa 90 to 180
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 260
440
Tensile Strength: Ultimate (UTS), MPa 390 to 440
660
Tensile Strength: Yield (Proof), MPa 250 to 380
310

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 670
1350
Melting Onset (Solidus), °C 550
1310
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
9.1
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
9.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
190
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 36 to 41
23
Strength to Weight: Bending, points 39 to 43
21
Thermal Diffusivity, mm2/s 48
2.3
Thermal Shock Resistance, points 17 to 19
19

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
2.5 to 4.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
27 to 31
Copper (Cu), % 4.2 to 5.0
0 to 0.5
Iron (Fe), % 0 to 0.1
2.5 to 6.0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 0.050
53.3 to 67.5
Niobium (Nb), % 0
0.5 to 2.5
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0