MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. C11400 Copper

A357.0 aluminum belongs to the aluminum alloys classification, while C11400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is C11400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 3.7
2.8 to 51
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Shear Strength, MPa 240
150 to 210
Tensile Strength: Ultimate (UTS), MPa 350
220 to 400
Tensile Strength: Yield (Proof), MPa 270
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 500
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 610
1080
Melting Onset (Solidus), °C 560
1030
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
390
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
100
Electrical Conductivity: Equal Weight (Specific), % IACS 140
100

Otherwise Unclassified Properties

Base Metal Price, % relative 12
32
Density, g/cm3 2.6
9.0
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1110
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 520
24 to 680
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 53
18
Strength to Weight: Axial, points 38
6.8 to 12
Strength to Weight: Bending, points 43
9.1 to 14
Thermal Diffusivity, mm2/s 68
110
Thermal Shock Resistance, points 17
7.8 to 14

Alloy Composition

Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Copper (Cu), % 0 to 0.2
99.84 to 99.966
Iron (Fe), % 0 to 0.2
0
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 6.5 to 7.5
0
Silver (Ag), % 0
0.034 to 0.060
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.1