MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. EN 1.4563 Stainless Steel

A384.0 aluminum belongs to the aluminum alloys classification, while EN 1.4563 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is EN 1.4563 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
40
Fatigue Strength, MPa 140
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Shear Strength, MPa 200
420
Tensile Strength: Ultimate (UTS), MPa 330
620
Tensile Strength: Yield (Proof), MPa 170
250

Thermal Properties

Latent Heat of Fusion, J/g 550
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 73
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 7.5
6.3
Embodied Energy, MJ/kg 140
87
Embodied Water, L/kg 1010
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
200
Resilience: Unit (Modulus of Resilience), kJ/m3 180
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
21
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 39
3.2
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 3.0 to 4.5
0.7 to 1.5
Iron (Fe), % 0 to 1.3
31.6 to 40.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
30 to 32
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10.5 to 12
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0