MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. EN 1.4865 Stainless Steel

A384.0 aluminum belongs to the aluminum alloys classification, while EN 1.4865 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is EN 1.4865 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
6.8
Fatigue Strength, MPa 140
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 330
470
Tensile Strength: Yield (Proof), MPa 170
250

Thermal Properties

Latent Heat of Fusion, J/g 550
320
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 610
1380
Melting Onset (Solidus), °C 510
1330
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 73
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
33
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 7.5
5.8
Embodied Energy, MJ/kg 140
81
Embodied Water, L/kg 1010
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
27
Resilience: Unit (Modulus of Resilience), kJ/m3 180
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 39
3.1
Thermal Shock Resistance, points 15
11

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
34.4 to 44.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
36 to 39
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 12
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0