MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. ASTM A182 Grade F23

A390.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F23 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is ASTM A182 grade F23.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
190
Elastic (Young's, Tensile) Modulus, GPa 75
190
Elongation at Break, % 0.87 to 0.91
22
Fatigue Strength, MPa 70 to 100
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Tensile Strength: Ultimate (UTS), MPa 190 to 290
570
Tensile Strength: Yield (Proof), MPa 190 to 290
460

Thermal Properties

Latent Heat of Fusion, J/g 640
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 580
1500
Melting Onset (Solidus), °C 480
1450
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 67
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 7.3
2.5
Embodied Energy, MJ/kg 140
36
Embodied Water, L/kg 950
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
550
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 19 to 30
20
Strength to Weight: Bending, points 27 to 36
19
Thermal Diffusivity, mm2/s 56
11
Thermal Shock Resistance, points 9.0 to 14
17

Alloy Composition

Aluminum (Al), % 75.3 to 79.6
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
1.9 to 2.6
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.5
93.2 to 96.2
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 16 to 18
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0