MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. C90400 Bronze

A390.0 aluminum belongs to the aluminum alloys classification, while C90400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
77
Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 0.87 to 0.91
24
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
41
Tensile Strength: Ultimate (UTS), MPa 190 to 290
310
Tensile Strength: Yield (Proof), MPa 190 to 290
180

Thermal Properties

Latent Heat of Fusion, J/g 640
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
990
Melting Onset (Solidus), °C 480
850
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 130
75
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
12
Electrical Conductivity: Equal Weight (Specific), % IACS 67
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 7.3
3.5
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 950
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
65
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
150
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 19 to 30
10
Strength to Weight: Bending, points 27 to 36
12
Thermal Diffusivity, mm2/s 56
23
Thermal Shock Resistance, points 9.0 to 14
11

Alloy Composition

Aluminum (Al), % 75.3 to 79.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 4.0 to 5.0
86 to 89
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 16 to 18
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7