MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 1.0034 Steel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 1.0034 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
97 to 110
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
9.0 to 32
Fatigue Strength, MPa 130
140 to 170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170
220 to 230
Tensile Strength: Ultimate (UTS), MPa 240
340 to 380
Tensile Strength: Yield (Proof), MPa 130
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
53
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 1040
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 120
84 to 210
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
12 to 13
Strength to Weight: Bending, points 33
14 to 15
Thermal Diffusivity, mm2/s 52
14
Thermal Shock Resistance, points 11
11 to 12

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
98.7 to 100
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 0.7
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 11 to 13
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0