MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 1.4865 Stainless Steel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 1.4865 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 1.4865 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
140
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
6.8
Fatigue Strength, MPa 130
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 240
470
Tensile Strength: Yield (Proof), MPa 130
250

Thermal Properties

Latent Heat of Fusion, J/g 570
320
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 590
1380
Melting Onset (Solidus), °C 580
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.6
5.8
Embodied Energy, MJ/kg 140
81
Embodied Water, L/kg 1040
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
27
Resilience: Unit (Modulus of Resilience), kJ/m3 120
160
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 33
17
Thermal Diffusivity, mm2/s 52
3.1
Thermal Shock Resistance, points 11
11

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
34.4 to 44.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
36 to 39
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0