MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 1.8523 Steel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 1.8523 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 1.8523 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
300
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
15
Fatigue Strength, MPa 130
530
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 170
610
Tensile Strength: Ultimate (UTS), MPa 240
1000
Tensile Strength: Yield (Proof), MPa 130
800

Thermal Properties

Latent Heat of Fusion, J/g 570
260
Maximum Temperature: Mechanical, °C 170
480
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.2
Embodied Energy, MJ/kg 140
31
Embodied Water, L/kg 1040
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
140
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1700
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
36
Strength to Weight: Bending, points 33
28
Thermal Diffusivity, mm2/s 52
10
Thermal Shock Resistance, points 11
29

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0
3.0 to 3.5
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
93.5 to 95.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.4 to 0.7
Molybdenum (Mo), % 0
0.8 to 1.1
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 11 to 13
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.15
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0