MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. Monel 400

A413.0 aluminum belongs to the aluminum alloys classification, while Monel 400 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is Monel 400.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
160
Elongation at Break, % 3.5
20 to 40
Fatigue Strength, MPa 130
230 to 290
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
62
Shear Strength, MPa 170
370 to 490
Tensile Strength: Ultimate (UTS), MPa 240
540 to 780
Tensile Strength: Yield (Proof), MPa 130
210 to 590

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 590
1350
Melting Onset (Solidus), °C 580
1300
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 7.6
7.9
Embodied Energy, MJ/kg 140
110
Embodied Water, L/kg 1040
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 120
140 to 1080
Stiffness to Weight: Axial, points 16
10
Stiffness to Weight: Bending, points 54
21
Strength to Weight: Axial, points 25
17 to 25
Strength to Weight: Bending, points 33
17 to 21
Thermal Diffusivity, mm2/s 52
6.1
Thermal Shock Resistance, points 11
17 to 25

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 0 to 1.0
28 to 34
Iron (Fe), % 0 to 1.3
0 to 2.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Nickel (Ni), % 0 to 0.5
63 to 72
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.024
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0