MakeItFrom.com
Menu (ESC)

AISI 316LN Stainless Steel vs. S30452 Stainless Steel

Both AISI 316LN stainless steel and S30452 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 95% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 316LN stainless steel and the bottom bar is S30452 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 42
34
Fatigue Strength, MPa 200
250
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 80
88
Shear Modulus, GPa 82
77
Shear Strength, MPa 410
440
Tensile Strength: Ultimate (UTS), MPa 590
660
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
420
Maximum Temperature: Mechanical, °C 940
960
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
15
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
3.0
Embodied Energy, MJ/kg 53
43
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 27
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
180
Resilience: Unit (Modulus of Resilience), kJ/m3 130
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
23
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.1
4.2
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 16 to 18
18 to 20
Iron (Fe), % 62 to 71.9
66.3 to 73.8
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 10 to 14
8.0 to 10.5
Nitrogen (N), % 0.1 to 0.16
0.16 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030